If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49=34.4t-4.905t^2
We move all terms to the left:
49-(34.4t-4.905t^2)=0
We get rid of parentheses
4.905t^2-34.4t+49=0
a = 4.905; b = -34.4; c = +49;
Δ = b2-4ac
Δ = -34.42-4·4.905·49
Δ = 221.98
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34.4)-\sqrt{221.98}}{2*4.905}=\frac{34.4-\sqrt{221.98}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34.4)+\sqrt{221.98}}{2*4.905}=\frac{34.4+\sqrt{221.98}}{9.81} $
| b/(-12)=-6 | | 0=16t^2+5t-74 | | 5m^2-35m+60=0 | | x-5/2=2x-1/3 | | n^2-4n+7=21 | | 9–9x=9 | | 20x-6=2x+3 | | ((4x+1)/4)-((2x+3)/3)=7/12 | | 9x-4/4=8 | | 8x=64.8 | | 9(4x+7)–6(7x+10)=-54 | | 1/2(4x-8)=2x+4 | | 1/4s+1/2(6-3/2s)=5(7/5-1/2s) | | 3x+30=12 | | Y-250x=500 | | Y-205x=500 | | .5x=8x–15 | | 30=3x+7x | | -1/2(4m+3)=5-6m | | 7x2–1=3x | | 2y^2=-6 | | (8a-3)=(4a+7) | | 900-x=2(x-450) | | 9×x+27=0 | | 4x+10x=18 | | 3y+10=y-3 | | x=(2.2×106M−2)(0.10M)3 | | 567/8*41/4=h | | Z-135=4q | | 567/8^41/4=h | | 5(x-7)=6(x+2) | | (2+i)/i=0 |